Герб МГТУ им. Н.Э. БауманаНаучно-техническая библиотека МГТУ им. Н.Э. Баумана
Калужский филиал

Подробное описание документа

Кириченко, А. А., Практикум по нейропакетам : монография / А. А. Кириченко. — Москва : Русайнс, 2019. — 253 с. — ISBN 978-5-4365-3507-4.

В настоящее время усиливается интерес к использованию искусственных нейронных сетей при получении новых знаний. Теория познания считает для этого типовой такую последовательность действий: созерцание – накопление – кластеризация – классификация – узнавание – предсказание – прогнозирование. Для решения этих задач существуют специальные программные средства. При изучении дисциплины «Нейросетевые технологии» один из её разделов называется «Нейропакеты», которые являются программными средствами для проведения нейросетевых исследований. Наибольшее распространение в нейропакетах получили программные реализации таких нейросетей, как перцептроны и сети Кохонена. С каждым годом появляются новые программные реализации нейросетей – сети RBF, Хопфилда, Хэмминга, свёрточные, рекуррентные, рекурсивные. Изменяются и методы использования нейросетей: глубокое обучение, свёртка, преобразование накапливаемых при обучении нейросетей знаний в правила продукций. Меняются и цели, с которыми проводятся нейросетевые исследования: смысловой поиск информации, анализ тематической структуры текстов, рисунков, музыкальных произведений и т.д. В этой книге речь пойдёт только о трёх некоммерческих программных средствах, два из которых относятся к группе нейропакетов. Раньше считалось, что основной и единственной особенностью нейросетей является «обучение на примерах». Для знакомства с этой особенностью служит приводимая студенческая нейросеть. Нейропакет Deductor Academic даёт возможность увидеть в работе перцептроны и сети Кохонена. Пакет MemBrain расширяет возможности нейропакетов и позволяет решать задачи на основе не только перцептронов и сетей Кохонена, но и использования рекуррентных и рекурсивных искусственных нейронных сетей. Книга предназначена для студентов и полезна всем специалистам, выполняющим нейросетевые исследования. Ключевые слова: нейросетевые исследования; автоматическая классификация; распознавание образов; кластеризация; перцептрон; рекуррентная нейросеть; рекурсия.